
-i

.//.,/_ _ _/-_i<L..__

Fast Causal Multicast-

Kenneth Birman

Department of Computer Science, CorneU University

Andre Schiper

Ecole Polytechnique Federale de Lausanne, Switzerland

Pat Stephenson

Department of Computer Science, Cornell University

April 10, 1990

Abstract

A new protocol is presented that efficiently implements a reliable, causally or-

dered multicast primitive and is easily extended into a totally ordered one. Intended

for use in the Isis toolkit, it offers a way to bypass the most costly aspects of Isis

while benefiting from virtual synchrony. The facility scales with bounded overhead.

Measured speedups of bore than an order of magnitude were obtained when the pro-
tocol was implemented within Isls. One conclusion is that systems such as Isis can

achieve performance competitive with the best existing multicast facilities - a finding

contradicting the widespread concern that fault-tolerance may be unacceptably costly.

Keywords and phrases: Distributed computing, fault-tolerance, process groups,

reliable multicast, ABCAST, CBCAST, Isls.

TR90-1105

"This work wee supported by the Defense Advanced Rese-,rch Projects Agency (DoD) under ARPA

order 6037, Contract N00140-87-C-8904 sad under DARPA/NASA subcontract NAG2-593 administered
by the NASA Ames Research Center. The _ews, opinions, and findings contained in this report are

those of the authors and should not be construed as an 0fllcial Department of Defense position, policy, or
decision.

1

(_ASA-CR-186043) FAST CASUAL MULTICA<:T NOO-24OC, 9

(Cornel 1 Uni v.) "_3 p CgCL 12A

Uncl <.is

G31o4 02_9141

I Introduction

The IslsToolkit [BJKS88] provides a varietyof toolsfor building software in loosely

coupled distributedenvironments. The system has been successfulin addressingproblems

ofdistributedconsistency,cooperativedistributedalgorithms,and fault-tolerance.At the

time of thiswriting,ISIS was in use at more than 250 locationsworldwide.

Two aspects of Islsare key to itsoverallapproach:

• An hnplementation of v_rt_z/Iy sl/nchrono_ process groups.

• A collection of atomic multicast protocols with which processes and group members

interact with groups.

Although IsIs supports a wide range of multicast protocols, a protocol called CBCAST

accounts for the majority of communication in the system; in fact, many of the Iszs tools

are little more than invocations of this communication primitive. For example, the Isis

replicated data tool uses a single (asynchronous) CBCAST to perform each update and

locking operation; reads require no communication at all. A consequence is that the cost

of CBCAST represents the dominant performance bottleneck in" the Isis system.

The initial Isis CBCAST protocol was costly in part for structural reasons, and in part

because of the protocol used. The implementation was within a protocol server, hence all

CBCAST communication was via an indirect path. Independent of the cost of the proto-

col itself, this indirection was tremendously expensive. With respect to the protocol used,

our initial implementation favored generality over specialization, permitting extremely

flexible destination addressing, and using a piggybacking mechanism that achieved a de-

sired ordering property but required a garbage collection mechanism. On the other hand,

this structure seemed to be the only one capable of supporting a powerful, general set of

programming tools like the ones in our toolkit: simpler protocols often simply overlook

critical forms of functionality, which may explain why so few have entered widespread

use. Particularly valuable to us has been the ability to to support multiple, possibly

overlapping process groups, and virtual synchrony [BJKS88].

The protocol we present here is based on a causal ordering protocol originally developed by

Schiper [SES89]. Unlike our previous work, it assumes a preexisting virtually synchronous

programming environment like the one that Isis provides, although using few of its fea-

tures. Further, it supports a relatively restricted form of multicast addressing. Were our

work done outside of the context of Isis, this would seriously limit its generality. In our

implementation, however, messages that do not conform to these restrictionsare simply

routed via the old,more costlyalgorithm. A highlyoptimized multicastprotocolresults

that _is_sse8 the old Islssystem and imposes very littleoverhead beyond that of the

message transportlayer.The majority of Islscommunication satisiiesthe requirements

of the bypass protocolsand hence bene/itsfrom our work.

Our protocol uses a timestamping scheme, and in thisrespectresembles prior work by

T.

Ladkin [LL86] and Peterson [PBS89]. However, our results are substantially more general.

The most important differences are these:

• Peterson's Psync-based protocol can be used only in systems composed of a single

process group, ours supports multiple, possibly overlapping process groups.

• Both Peterson's and Ladkin's protocols have overhead linear in the number of pro-

cesses that ever participated in the application, which could be large; our overhead
6

is bounded and small.

Like Peterson's and Ladkin's protocols, our basic protocol provides for message delivery

ordering that respects causality in the sender (CBCAST), but is readily extended into a

more costly protocol that provides a total delivery ordering even for concurrent invocations

(ABCAST).

The bypass protocol suite lets users select the multicast properties desired for an appli-
cation. Choices include a "raw" delivery service achieving extremely high performance

but with minimal reliability guarantees, multicast with atomicity and FIFO delivery, and

causal or total ordering. This approach permits the user to pay for just those reliability

and ordering properties needed, by the application.

The paper is structured as follows. Section 2 reviews the multicasting problem and defines

our terminology. Sections 3 and 4 introduce our new technique. Section 5 discussions

extensions of the CBCAST protocol, including the bypass ABCAST protocol. The

costs of our various primitives are measured in Section 6.

2 Execution model

2.1 Basic system model

The system is composed of processes P = {pl,P2, .-.,P,_} with disjoint memory spaces.

Initially, we assume that this set is static and known in advance; later we relax this

assumption. Processes fail by crashing detectably (a fail-stop assumption); notification is

provided by Isis in a manner described below. In many situations, processes will need

to cooperate. For this purpose, they form process groups. Each such group has a name

and a set of member processes; members join and leave dynamically; a failure causes a

departure from all groups to v,;hich a process belongs. The members of a process group

need not be identical, nor is there any limit on the number of groups to which a process

may belong. The set of groups is denoted by G = (gl,g2...). In typical settings, the

number of groups will be large and processes will belong to several groups.

Our system model is unusual in assuming an external service that implements the pro-

cess group abstraction. The interface from a process to this service will not concern us

here, but the manner in which the service communicates to a process is highly relevant.

A tr/ewof a processgroup is a list of its members. A _et0 sequence for g is a list

u_ewo(g), t_ewl (g), ..., tr_eto,(g), where

z. e o(g) = ¢.

2. Yi : vie_i(g)C_P, where P is the set of all processes in the system.

3. v/etu_(g) and v/ewi+t(g) differ by the addition or subtraction of exactly one process.

We assume that some sortofprocessgroup servicecomputes new views and communicates

them to the members of the groups involved.Processeslearnof the failureof other group

members only through thisview mechanism, never through any sortof directobservation.

We assume that directcommunication between processesisalways possible;the software

implementing thisiscalledthe message traasportlayer.Within our protocols,processes

always communicate using point-to-pointand multicastmessages; the lattermay be trans-

mitted using multiple point-to-pointmessages ifno more efficientalternativeisavailable.

The transport communication primitivesmust provide !ossless,uncorrupted, sequenced

message delivery.Our approach permits applicationbuildersto definenew transportpro-

tocols,perhaps to take advantage of specialhardware. Our initialimplementation uses

unreliabledatagrams, but has an experimental protocolthat exploitsethernet hardware

multicast.

The execution of a process isa partiallyordered sequence of events,each corresponding

to the execution of an indivisibleaction. An acyclicevent order, denoted --,Preflects

the dependence of events occurringat processp upon one another. The event send_,(m)

denotes the transmissionof m by processp to a setof I or more destinationsdests(m);the

receiveevent isdenoted rctp(m). We omit the subscriptwhen the contextisunambiguous.

If[dests(m)[> I we willassume that send puts messages intoallcommunication channels

in a singleactionthatmight be interruptedby failure,but not by othersend or rc_ actions.

We denote by revp(_e,#_(9))the event by which a processp belonging to g "learns"of

We distinguishthe event ofrece/v/r,@a message from the event ofdel/tery,sincethisallows

us to model protocolsthat delay message deliveryuntilsome conditionissatisfied.The

deliveryevent isdenoted de.liter(m) where rev(m) P-,deli_Jer(m).

2.2 Properties required of multicast protocols

Although Isismakes heavy use of virtualsynchrony,itwillnot be necessary to formalize

thisproperty forour presentdiscussion.However, the support ofvirtualsyuchrony places

severalobligationson the processesin our system. First,when a process multicasts a

message m to group #, dest_(m) must be the currentmembership of g. Secondly,when

the group view changes, allmessages sent in the priorview must be _-flushed"out of the

system (delivered)beforethe new view may be used. Finally,messages must satisfya

4

failure atomicity property: if a message m is delivered to any member of a group, and it

stay operational, m must be delivered to all members of the group even if the sender fails

before completing the transmission.

The multicast protocols that interest us here also provide delivery ordering guarantees..ks

in [Lam78], we define the potential causality relation for the system, --*, as the transitive
closure of the relation defined as follows:

1. If 3p : ePe _, then e--*e _

2. Vm : send(m)--,rcv(m)

CBCAST satisfies a causal delivery property:

If m and m' are CBCAST's and send(m)-,send(m') then

YpE dests(m)ndests(m') : deliver(m)P deliver(m').

If two CBCAST messages are concurrent, the protocol places no constraints on their

delivery ordering at overlapping destinations.

ABCAST extends the CBCAST ordering into a total one:

If m and m _ are ABCAST's then either

1. VpE dests(m)Ndests(m _) : deliver(rn)P deliver(m_), or

2. VpE dests(m)ndests(m') : deliver(m') P-*deliver(m).

Because the ABCAST protocol orders concurrent events, it is more costly than CB-

CAST; requiring synchronous solutions where the CBCAST protocol admits efficient

asynchronous solutions. Birman and Joseph [B J89] and Schmuck [Sch88] have exhibited a

large class of algorithms that can be implemented using asynchronous CBCAST. More-

over, Schmuck has shown that in many settings algorithms specified in terms of ABCAST

can be modified to use CBCAST without compromising correctness.

The protocols presented here all assume that processes only multicast to groups that they

are members of, and that all multicasts are to the full membership of a single group.

For demonstrating liveness, we will assume that any message sent by a process is eventually
received unless the sender or destination fails, and that failures are eventually reported

by ISIS.

3 The CBCAST bypass protocol

This section presents two basic CBCAST protocols for use within a single process group

with fixed membership. Both use timestamps to delay messages that arrive out of causal

order. The section that follows extends these schemes and then merges them to obtain a

single solution for use with multiple, dynamic process groups.

5

3.1 Timestamping protocols

We begin by describingtwo protocolsforassigningtimestamps to messages and forcom-

paring timestamps. The protocols are standard except in one respect: whereas most

timestamping protocolscount arbitrary_events',the ones definedhere count only send

events.

3.2 Logical time

The firsttimestamping protocolisbased on one introduced by [Lam78], calledthe tog/ca/

crock protocol. Each process p maintains an unbounded localcounter, LT(p), which it

initializes to zero. For each event send(m) at p, p sets LT(p) -- LT(p) + 1. Measles

are time.stamped with the sender's incremented counter. A process p receiving a message

with timestamp LT(m) sets LT(p) = maz(LT(p), LT(m)). As in [Lam78], one can show

that if send(m)--. send(m') then LT(m) <_ LT(ml). The converse, however, does not hold:

the protocol may order messages that were sent concurrently.

Note that the LT counter for a process is updated at the r_ event, as opposed to the

deliser event, for an incoming message. We make use of this property in the development

below. _ _ -_: = : __

3.3 Vector time

A second timestamping protocolisbased on the substitutionof vectortimes for the local

counters in the logicaltime protocol.Vector times were proposed origiuaUy in [Mar84];

other researchershave alsoused them [Fid88,MatSg,LL86,SCh88];our use of them ismoti-

vated by an protocolpresentedin [SES89]. In comparison with logicaltimes,thisprotocol

has the advantage of representing --, precisely.

A vector time for a process p_, denoted VT(pi), is a vector of Ien_h n (where n =]PI),

"indexed by process-id.

1. When Pl staxts execution, VT(pI) is initialized to zeros.

2. For each event s_(m) at pi, VT(p_)[i] is incremented by 1.

3. Ear.h message sent by process p_ is timestamped with the incremented value of

VT(p,).

® When process pj deliversa message rn from pi containing VT(m), pj modifies its

vectortime in the followingmanner:

Vkel..n : VT(pj)[_] = maz(VT(pj)[k], Vr(m)fk])

Rules for comparing vector times are:

6

i. VT_ < VT2 iffVi: VT,[i] < VT2[i]

2. VTI < VT2 ifVT, <_VT2 and 3i: VT,[i]< VT2[i]

Notice that in contrast to the rule for LT(p), VT(p) is updated at the deliver event for

an incoming message. We will make use of this distinction below.

It can be shown that given messages m and rn', send(m)--*send(rn') iff VT(rn) < VT(m')

[Mat89,Fid88]: vector timestamps represent causality precisely. This constitutes the fun-

damental property of vector times, and the primary reason for our interest in such times

as opposed to logical ones.

3.4 Causal message delivery

Recallthatifprocessescommunicate using CBCAST, allmessages must be deliveredin

an order consistentwith causality.Suppose that a setof processesP communicate using

only broadcaststo the fullsetofprocessesin the system;thatis,Vrn :dests(m) = P. This

hypothesisisunrealistic,but Section4 willadapt the resultingprotocolto a settingswith

multipleprocessgroups.I We now develop two deliveryprotocolsby which each processp

receivesmessages sent to it,delaysthem ifnecessary,and then deliversthem such that:

If send(m)--, send(rn') then deliver(rn)--* deliver(rn').

3.4.1 LT protocol

Our firstsolutionto the problem isbased on logicaldocks; and isreferredto as the LT

protocolfrom hereon. Itisrelatedto othersolutionsthathave appeared in the literature

[Lam78,CASD86] and willbe used as a buildingblock lateron. The basictechniquewill

be to delay a message untilmessages with atleastas largea timestamp has been received

from every other processin the system. However, sincethiswould only work ifevery

processsends an infinitestream ofmulticasts,a channel flushingmechanism isintroduced

to avoid potentiallyunbounded delays.

Say that the channel from process pj to pi has been flushed at time LT(m) if pi will

never receive a message m' from pj with LT(rn') < LT(m). Flushing can be achieved

by p/ngir_2.Toping a ch_nel, pl sends pj a timestamped inquiry message inq, but

without firstincrementing LT(pi). On receivingan inquirypj, as usual,setsLT(pj) =

maz(LT(pj), LT(inq)) and replies with an ack message containing LT(pj), without mod-

ifying LT(pj). On receiving the ack Pl, as usual, sets LT(pi) = rnaz(LT(pi), LT(ack)).

If no new messages are being multicast, pinging advances LT(pi) and LT(pj) to the same

value.

The protocol is as follows:

1This hypothesis is actually used o_y in the VT delivery protocol.

1. Before sending message m, process pl increments LT(pi) and then timestsmps m.

. On receivingmessage m, processpj setsLT(pj) = maz(LT(pi) ,LT(m)). Then, pj

delaysm untilforallk _ i,the channel between p# and pt has been flushedfor time

LT(m). pj does not delay messages receivedfrom itself.

3. Ifm has the minimum timestamp among messages satisfying(2),m may be deliv.
ered.

To prove thatcausaldeliveryisachieved,considertwo messages such thatsend(ml)-.-,se'fui(m2),

and hence LT(ml) < LT(m2). There are two cases:

I* The same processsends ml and m2. Because communication isFIFO, mt willbe

receivedbefore m2, and because LT(ml) < LT(m2), condition 3 guarantees that

ml willbe deliveredbefore m2.

1 LY/fferentprocessessend ml and m2. According to condition 2, m2 can only be

deliveredwhen allchannels have been flushedfor LT(m2). As communication is

FIFO, and Li'(ml) < f,T(m2), itfollowsthat rnl has been received.Condition 3

then guarantees that rnl will be deliveredbeforem_.

The communication cost,however, is high: 2n- 3 messages may be needed to flush

channels for every message delivered,hence to multicast one message, O(n 2) messages

could be transmitted. For infrequentmulticasting,thiscost may well be tolerable;the

overhead would be unacceptable ifincurred frequently.However, in place of pinging,

processes_n periodicallymulticasttheirlogicalthnestamps to allother group members.

Receipt of such a multicastgushes the channels: at worst, a received message willbe

delayed untilthe recipienthas multicastitstimestamp and allother processeshave done

a subsequent timestamp multicast.The overhead of the protocolcan now be tuned for a

given enviroument.2

5.4.2 VT protocol

-A much cheaper ution Can be derived us/ng vector timestamps; we will refer to this

as the VT protocol. The idea is basically the same as in the LT protocol, but because

VT(m)[k] indicatespreciselyhow many multicastsby processPh precede m, a recipient

of m willknow preciselyhow long m must be dei_yed prior to delivery;namely, until
, f -. _

2Readem fakir with the A.T rea/-time protocols of [CASD86] willnote the similaritybetween that

protocol and tltisversion of ours. Clock synchronization (on which the A,T scheme is based) is normaJ/y

done using periodic multicuts IST87]. This modification recalls suggestions made in _Lam78], and makes

[ogica/ docks behave like weakly synchronized phys/cal clocks. Clock synchronization algorithms with

good messlq_e complexity are known, hence substitution of a A-T based protocol for the logical clock_

based protocol in our _combined _ algorithm, below, is an intriguing directionfor future study.

VT(m)[k] messages have been deliveredfrom pk. Since _ isan acyclicorder accurately

representedby the vectortime,the resultingdeliveryorder iscausaland deadlock free.

The protocolisas follows:

i. Before sending m, processPi increments VT(pi)[i]and timestamps m.

2. On receptionofmessage rn sentby Piand timestamped with VT(m), processpj # Pi

delaysm until

VT()[q = VT(p#)[i]+

Vk # VT(m)[k] < VT(pj)[k]

Process pj need not delay messages received from itself.

3. When a message m is delivered, VT(pj)[i] is incremented (this is simply the vector

time update protocol from Section 3.3).

Step 2 is the key to the protocol. This guarantees that any message m' transmitted

causallybeforem (and hence with VT(rn _)< VT(m)) willbe deliveredat pj beforem is

delivered.An example in which thisruleisused to delay deliveryof a message appears

in Figure i.

Pl

P2

P3

Time

Figure i: Using the VT ruleto delay message delivery

The correctness of the protocol will be proved in two stages. We first show that causality is

never violated (safety) and then we demonstrate that the protocol never delays a message

indefinitely (liveness).

Safety. Consider the actions of a process pj that receives two messages ml and m2 such

that 8e (ml send(m2).

• Case 1. ml and m 2 are both transmitted by the same process pi. Recall that we

assumed a lossiess, sequenced communication system, hence pj receives ml before

m2. By construction, VT(ml) < VT(m2), hence under step 2, rn2 can only be
delivered after ml has been delivered.

Case 2. ml and m2 are transmitted by two distinct processes Pi and Pi'. We will show

by induction on the messages received by process pj that rn2 cannot be delivered

before ml. Assume that m_ has not been delivered and that pj has received k

messages.

Observe first that seru/(ml)--*se_(m2), hence VT(ml) < VT(m2) (basic property

of vector times). In particular, if we consider the field corresponding to process pi,
the sender of ml, we have

VT(m)[i]< VT(2)[i] (I)

Base case. The firstmessage d_vered by pj cannot be m2. Recall that ifno

messages have been delivered to pj, then VT(pj)[i] = 0. However, VT(ml)[i] >

0 (because ml is sent by pi), hence VT(m2)[i] > 0. By application of step 2 of

the protocol, rn2 cannot be delivered by pj.

Inductive step. Suppose pj has received k messages, none of which is a message
m such that ser.d(ml)--,send(rn). If rn1 has not yet been delivered, then

VT(p)[i]< VT(m)[i] (2)

This follows because the only way to assign a value to VT(p#)[i] greater than

VT(ml)[i] is to deliver a message from pl that was sent subsequent to ml, and

such a message would be causally dependent on m_. From relations 1 and 2 it
follows that

VT(p_)[i]< VT(m_){i]

By applicationof step 2 of the protocol,the k + l'stmessage deliveredby pj

cannot be rn2.c]

Liveness. Suppose that there existsa broadcast message m sent by process Pi that can

never be deliveredto processpj. Step 2 impliesthat either:

VT(m)[i] _ P'T(pj)[i]+ I,or

and that m was not transmittedby processPi- We considerthese casesin turn.

1. P'T(m)[i]_ P'T(pj)[i]+ 1,thatis,rnisnot the nezt message to be deliveredfrom p_

from pj. Since allmessages are multicastto allprocessesand channels are lossiess

and sequenced, itfollowsthat there must be some message m' sent by p_ that pj

receivedpreviously,has not yet delivered,and with VT(m')[i] = P'T(pj)[i]-i-i. If

rn_isalsodelayed,itmust be under the other case.

10

, 3k # i: VT(m)[k] > VT(pj)[k]. Let n = VT(m)[k]. The n'th transmissionof

processpk, must be some message m'--,m that has eithernot been receivedat pj,

or was receivedmud isdelayed. Under the hypothesis that allmessages are sent

to allprocesses,m' was already multicastto Pi" Since the communication system

eventuallydeliversallmessages,we may assume that m' has been receivedby Pi.

The same reasoningthat was appliedto m can now be appliedto m'. The number

of messages that must be deliveredbeforem isfiniteand > isacyclic,hence this

leads to a contradiction. G

4 Extensions to the basic protocol

Neither of the protocols in Section 3 is suitable for use in a virtually synchronous setting

with multiple process groups and dynamicaliy changing group views. This section first

extends the simple VT CBCAST protocol of Section 3.4.2 into one suitable for use

with multiple but static process groups, but arrives at a protocol subject to a significant
constraint on what we call the communication structure of the system. Then, we show

how to combine the protocol with other mechanisms, notably the LT CBCAST protocol

of Section 3.4.1, to overcome this limitation. We arrive at a powerful, general solution.

4.1 Transmission limited to within a single process group

The first extension to the VT protocol is concerned with processes that multicast only

within a single process group at a time. This problem is clearly trivial if process groups

don't overlap, a property that can be deduced at runtime (seeSection 4.4.4). On the other

hand, we have assumed that overlap will not be uncommon. Such scenarios motivate the

series of changes to the algorithm presented in this section and the ones that follow.

The first change is concerned with processes that belong to multiple groups, e.g. a process

p_ belongs to groups ga and gb, and multicasts only within groups, l_ulticasts sent by p_

to ga must be distinguished from tl_ose to gb, since a process pj belonging to gb and not

to ga that receives a message with VT(m)[j] -]_ will otherwise have no way to determine

how many of these k messages were sent to gb and hence precede rn causally. This leads us

to extend the single VT clock to multiple VT clocks; V'Ta is the logical clock associated

with group ga, and VT_[i] thus counts multicasts by process p_ to group ga. 3 Processes

maintain VT clocks for each group in the system, and attach all the VT clocks to every

message that they multicast.

The next change is to step 2 of the VT protocol. Suppose that process pj receives a message

m sent in group 9a with sender p_, and that pj also belongs to groups {g,, ...,g,} --- Gj.

Step 2 can be replaced by the following rule:

ZClearly, if p_ is not a member of go, then VTo[t_ = 0, thus allowing a sparse representation of the
timestamp. For clarity, we will continue to represent each timestamp VT_ as a vector of length n, with a
special entry, for each process that is not a member of 9a.

11

2' On receptionof message m from p_ _ pj,sent in ga_processpj delaysm until

2.1' VT_(m)[i] = VT_(pj)[i]+ 1,and

2.2'Vk : (PkEg, ^ k @ i): VTa(m)[k]'<_ vr(pj)[k],and

2.3'Vg: (geGj) : vr_(m) < vr#(pj).

As above,pj does not delay messages receivedfrom itself.

Figure 2 illustratesthe applicationof thisrulein an example with four processesinto

groups identifiedas/,I...p4.Processes_, ks and ks belong to group G,, and processesP2,

ks and P4 to group G2. Notice that rn2 and ma are delayed at ks, because itisa member

of G1 and must receivem, first.However, m2 isnot delayed at P4, because P4 isnot a

member of GÂ. And ma isnot delayed at P2, because P2 has already receivedrn, and it

was the sender of m2.

Z
ks _ -. -,,., _/m.: ((1,1,0,,),(,,i,0,i))

',._2:((I,o,o,.),(.,i,o,o)) .#k_.__
% o ,°"

I

'_ :i.m3:((I,0,0,,),(,,i,0,i))

ks

P4

Figure 2: Messages sentwithin process groups. G_ = {PI,_,ks} and G2 = {P2,ks,P4}

The proof of Section 3 adapts without di_culty to thisnew situation;we omit the nearly

identicalargument. One can understand the modi_ed VT protocolin intuitiveterms. By

ignoring the vectortimestamps for certaingroups in step 2.3',we are assertingthat there

isno need to be concerned that any undeliveredmessage from thesegroups could causally

precede m. But, the ignored entriescorrespond to groups to which pj does not belong,

and itwas assumed that allcommunication isdone within groups.

4.2 Use of partial vector timestamps ==__,.......

Until the present, we have associated with each message a vector time or vector times

having a total size determined by the number of processes and groups comprising the

12

application. Although such a constraint arises in many published CBCAST protocols,

the resulting vector sizes would rapidly grow to dominate message sizes. A substantial

reduction in the number of vector timestamps that each process must maintain and trans-

mit is possible in the case of certain communication patterns, which are defined precisely

below. Even if communication does not always follow these patterns, our new solution

can form the basis of other slightly more costly solutions which are also described below.

Define the communication structure of a system to be an undirected graph CG = (G, E)

where the nodes, G, correspond to process groups and edge (gl, g2) belongs to E iff there

exists a process p belonging to both gl and g2. If the graph so obtained has no biconnected

component 4 containing more than k nodes, we will say that the communication structure

of the system is k-bounded. In a k-bounded communication structure, the length of the

largest simple cycle is k. 5 A 0-bounded communication structure is a tree (we neglect

the uninteresting case of a forest). Clearly, such a communication structure is acyclic.

Notice that causal communication cycles can arise even if CG is acyclic. For example,

in figure 2, message rex, m2, m3 a.nd m 4 form a causal cycle spanning both gx and g2-

However, the acycllc structure restr_c_ such communication cycles in a useful way - such

cyles will either be simple cycles of length 2, or complex .cycles.

Below, we demonstrate that it is unnecessary to transport all vector timestamps on each

message in the k-bounded case. If a given group is in a biconnected component of size k,

processes in this group need only to maintain and transmit timestamps for other groups

in this biconnected component. We can also show that they need to maintain at least

these timestamps. As a consequence, if the communication structure is acyclic, processes

need only maintain the timestamps for the groups to which they belong.

We proceed to the proof of our main result in stages. First we address the special case of

an acyclic communication structure.

Lemma 1: Ira s_/stem has an ac!/clic communication structure, each process in the s!/s-

tern onl_l maintains and multicaat the VT tiraestaraps o.f groups to which it belongs.

Notice that under this lemma, the overhead on a message is limited by the size and number

of groups to which a process belongs.

We wish to show that if message m; is sent (causally) before message ink, they -_; will

be delivered before mk at all overlapping sites. Consider the chain of messages below.

ml =2 m3 mk- 1 mk

pl > p2> p3 > ----> pk > pk+l

El g2 g3 gk-1 gk

This schema signifies that process Pl multicasts message ml to group gl, that process

p_ lust receives message mx as a member of group gl and then multicasts m2 to g2,

4Two vertices are in the same biconnected component of a graph if there is a path between them after

any other vertex has been removed.

6The nodes of a simple cycle (other than the starting node) are distinct; a complex cycle may contain

axbitrary repeated nodes.

13

and so forth. In general,gi may be the same as gj for i _ j and Pi and pj may be

the same even for i _ j (in other words, the processes pi and the groups gi are not

necessarily all different). Let the term message chain denote such a sequence of messages,

and let the notation rni P-_rnj mean that p transmits rnj using a timestamp VT(mj) that

directly reflects the transmission of mi. For example, say that rni was the k'th message

transmitted by process Pi in group go. We will write rni_mj iff VTa(p.i)[i] > k and

consequently VTa(mj)[i]) k. Our proof will show that if mi_m_ and the destinations

of mi and rnj overlap, then miami, where pj is the sender of mj.

We now note some simple facts about this message chain that we will use in the proof.

Recall that a multicast to a group g= can only be performed by a process pi belonging to

ga. Also, since the communication structttte is acyclic, processes can be members of at

most two groups. Since m_ and mt have overlapping destinations, and _, the destination

of ml, is a member of gl and of g2, then gk, the destination of the final broadcast, is

either gl or g2' Since CG is acyclic, the message chain rnl...mt= simply traverses part of

a tree reversing itself at one or more distinguished groups. We will denote such a group

g,. Although causality information is lost as a message chain traverses the tree, we will

show that when the chain reverses itself at some group g,, the relevant information will

be "recovered" on the way back. :...... :_:_-_..... _............._:_.::_

Proof" of Len_nal- _epr_f _:by induction on l,the length of t_.e message chain

ml...mt. Recallthat we must show thatifml and rnt have _" "overlappingdestmatlons,they

willbe deliveredin causal order at allsuch destinations,i.ernl willbe deliveredbefore

7Bk. _

Base case. I = 2. Here, causaldeliveryistriviallyachieved,sincept -/_ must be a

member of gl and rnt¢willbe transmittedwith g1'stimestamp. It willthereforebe

deliveredcorrectlyat any overlappingdestinations.

Inductive step. Suppose that our algorithm deliversallpairsof causallyrelatedmes-

sages correctlyifthere isa message chain between them of length I< k. We show

that causalityisnot violatedfor message chainswhere l= k.

Consider a point in the causal chain where itreversesitself.We representthisby

rrlv_l-,Izlv--,rrlr_--_rrlv+l_where mr-l and rnr+t are sent in gr-1 =- gr+z by p, and

pr+1 respectively,and mr and rn,,are sentin gr by Pr and p,,. Note that p, and

Pr+l are members of both groups. This isillustratedin Figure 3. Now, rn_,willnot

be deliveredatp,+1 untilrn,has been deliveredthere,sincethey are both broadcast

in G,. We now have m,-1 _ mr _._+tm,.+1. We have now establisheda message

chain between rnI and rnt,where I < k. So, by the induction hypothesis,rnl will

be deliveredbeforernk at any overlappingdestinations,which iswhat we setout to

prove, r_

We now proceed to prove the main theorem.

14

Figure 3: CausalReversal

Theorem 1: Each process pi in a system needs only to maintain and muIticast the VT

timestamps of groups in the biconnected components of CG to which pi belongs.

Proof: As with Lemma 1, our proof will focus on the message chain that established

a causal link between the sending of two messages with overlapping destinations. This

sequence may contain simple cycles of length up to k, where k is the size of the largest

biconnected component of CG. Consider the simple cycle illustrated below, contained in

some arbitrary message chain.

ml ,.c ,.c+1 "

pl > ... p2 > p3 >

gl gc gl

Now, since Pi,/_ and FJ are all irt groups in a simple cycle of CG, all the groups are in the

same biconnected component of CG, and all processes on the message chain will maintain

and transmit the timestamps of all the groups. In particular, when me arrives at P3, it

willcarry a copy of VTgl that indicatesthat ml was sent.This means that me willnot

be deliveredat P3 untilml has been deliveredthere. So mc+1 willnot be transmitted

by P3 untilml has been deliveredthere. Thus p3ml-..+mc+1.We may repeat thisprocess

for each simple cycleof lengthgreaterthan 2 in the causalchain,reducing itto a chain

within one group. We now apply Lemma I,completing the proof.[]

Theorem 1 shows us what timestamps axe suf_cientin order to assurecorrectdeliveryof

messages. Are allthesetimestamps in factnecessary?Itturnsout that the answer isyes.

Itiseasy to show thatifa processthatisa member of a group withina biconnectedcorn-

15

ponent of CG does not maintain a VT timestamp for some other group in CG, causality

may be violated.We thereforestatewithout formal proof:

Theorem 2: If a system uses the VT protocol to maintain causality, it is both necessary

and su_c{ent /or a processpi to maintain and transmit th_seVT timestamps correspond_

ir_ to 9v'oups in the biconnected component o.f CG to which Pi be/orlgs.

4.3 Extensions to arbitrary communication structures

In general,managing information concerning the biconnected components of CG may be

difficult,especiallyin a dynamic environment. We believethat the most practicaluse of

the above resultisin the acycliccase,sincea processcan conservativelydetermine that it

isnot in any cycleby observing that the group of which itisa member overlapswith at

most one other group - a completely localtest(but see alsoSection4.4.4).Consequently,

although allour resultsgeneralize,the remainder of the paper focuses on the acyclic

solution,and we initiallyimplemented only the acyclicsolutionin Isls.In thissection,

we give two protocolsthat work in more general communication structures.The first

protocoldoes not use any knowledge about the communication structure,but itsometimes

imposes delayson message multicasting.The second protocoldoes use knowledge about

the communication structure,but does not impose delayson message multicasting.We

then extend both protocolsto arbitrarydynamic communication structures.

4.3.1 Conservative solution

Our firstsolutionisdenoted the conservativeprotocol.Each multicastm isfollowedby a

second multicasttermLu_a1:o(m)S!_g that m has reached allof itsdestination. The
sender of a multicastwillnormally know when to send the 1:erminaze as a side-effectof

the protocolused to overcome packetloss.The _ermlna'ce message may sentas a separate

multicast,but itcan alsobe piggybacked on the next CBCAST sent to the same group.

A _ermina_e message isnot itselfterminated.

We willsay that a group isacute for Frocessp, if:

1. p is the initiatorof a multicastto g that has not terminated,or

2. p has receivedan unterminated multicastto g, or

3. p has delayed the localdeliveryof a multicastto g (sentby some other processi_).

Note that thisisa localproperty;i.e.processp may compute whether or not it is active

forsome group g by examining itslocalstate.The conservativem_ticoat rulestatesthat

a process p may multicast to group g iffg is the only activegroup for process p or p

has no activegroups. Multicasts are sent using the VT protocol,as usual. Notice that

thisruleimposes a delay only when two causallysuccessivemessages are sentto different

16

groups. The conservative solution could be inefficient, but yields a correct VT protocol.

However, the overhead it imposes could be substantial if processes multicast to several

different groups in quick succession, and it is subject to potential starvation (this can,

however, be overcome).

The conservative solution will work correctly even if group membership changes dynami-

cally.

For brevity,we omit the correctnessproof of thissolution. The key point is that if

p multicastsm to 92 after91 has ceased to be active,then there are no undelivered

multicastsm' in 91 s.t.m'-,m. This can be demonstrated by showing that if91 isno

longeractiveand m'_m, then m' has terminated.

4.3.2 Excluded Groups

Assume that CG cont_ns cycles, but that some mechanism has been used to select a

subset of edges X such that CG _ -- (G, E - X) is known to be acyclic. We extend our

solution to use the acyclic VT protocol for most communication within groups. If there

is some g_ such that (g, g')EX we will say that group g is an excluded group and some

multicasts to or from g will be done using one of the protocols described below.

Keeping track of excluded groups could be difficult; however it is easy to make pessimistic

estimates (and we will derive an protocol that works correctly with such pessimistic es-

timates). For example, in Isis, a process p might assume that it is in an excluded group

if there is more than one other neighboring group. This is a safe assumption; any group

in a cycle in CG will certainly have two neighboring groups. This subsection and the two

that follow develop solutions for arbitrary communication structures, assuming that some

method such as the previous is used to safely identify excluded groups.

4.3.3 Combining the VT and LT protocols

Recall the LT multicastprotocol presented in Section 3. The protocol was inefficient,

but required that only a singletimestamp be sent on each message. Here, we run the

LT and VT protocolssimultaneously,piggybacking on each message both LT and VT

timestmmps, and apply a unifiedversionof the LT and VT deliveryschemes on receipt.

The LT timestamp isnotincremented on everybroadcast;itisonlyincremented on certain

broadcasts as describedbelow. This greatlyreduces the number of extra messages that

would be induced by the basicLT algorithm.

Say that m isto be multicastby p to group g. We say that p isnot safe in9 if:

• The lastmessage p receivedwas from some other group 9'.

• Either 9 or g_ is an excluded group.

17

Our protocol rule issimple;on sending, ifprocess p isnot safein group g, p willincre-

ment both its'LT timesamp and its'VT timestamp beforemulticastinga message to g.

Otherwise, itwilljustincrement its'VT timestamp. A message isdeliveredwhen it is

deliverableaccording to both the LT deliveryruleand the VT deliveryrule.

Notice that the pinging overhead of the LT protocol isincurred only when logicalclock

valuesactuallychange, which isto say only on communication withintwo differentgroups

inimmediate succession,where one of the groups isexcluded. That is,ifprocessp executes

for a period of time using the VT protocol and receivesonly messagesJthat leave LT(p)

unchanged, p willping each neighbor processesat most once. Clocks willrapidlystab_1_e

at the maximum existingLT value and pinging willthen cease.

Theorem 3: The combined VT-LT protocol will always deliver messages correctl!l in ar-

bitra_l communication structures.

Proof: Consider an arbitrarymessage chain where the firstand lastmessages have over-

lapping destinations.Without lossof generality,we willassume that gl...gtaxe distinct.

We wish to show that the lastmessage willbe deliveredafterthe firstat allsuch destina-

tions.

ml m2 m3 mk-1 Ink

pl • p2 • p3 > ----> pk > pk+'1

g 1 g2 g3 gk- 1 gk

If none of gl...gl is an excluded group, then, by Lemma 1,rnl willbe delivered before

rn_ at all overlapping destinations. Now, if some group gi is excluded, two cases axise -

eitherthelast group, gt isexcluded,-0r-_me o_t-h_ group _s-e.xcluded,if 9k-_s-excluded,

then p_ win in_emen_t its LT fire,tam p at some point between deliveringrnt_x and

sending rnt. Ifsome other group g_ isexcluded, i </c, then pk+_ willincrement itsLT

timestamp between deliveringrnt and sending mt+z. So the LT timestamp of mk will

always be greaterthan the LT timestamp of rnl,and m_ willbe deliveredmeterrnl at all

overlapping destinations. Q

4.4 Dynamic membership changes

We now consider the issueof dynamic group membership changes when using the C_m-

bined protocol. This raises several issues that are addressed in turn: virtually synchronous

addressing when joins occur, initializing VT timestamps, atomicity when fsilur_ occur,

and the problem of detecting properties of CG at runtime, such as when a process deter-

mines that its' group adjo'ms at most on on e ocher and henc e always uses the acyclic VT

protocol.

18

4.4.1 Joins

To achieve virtually synchronous addressing when group membership changes while multi-

casts are active, we introduce the notion of flushing the communication in a process group.

Consider a process group g in group view v/ewi(g). Say that a new view tr/ewi+l(g) now

becomes defined. There are two cases: v/etai+l(g) could reflect the addition of a new

process, or it could reflect the departure (or failure) of a member. Assume initially that

view changes are always due to adding new processes (we handle failures in Section 4.4.3).

We will flush communication by having all the processes in _ewi+t(g) send a message

"flush £+1 of g", to all other members. During the period after sending such messages

and before receiving such a flush message from all members of _ewi+l (g) a process will

accept and deliver messages but will not initiate new multicasts.

Because communication is FIFO, if process p has received a flush message from all mem-

bers of g under view i + 1, it will first have received any messages sent in view i. It

follows that all communication sent prior to and during the flush event was done using

VT timestamps corresponding to viewi(g), and that all communication subsequent to

installing the new view is sent using VT timestamps for v/e_#i+i (g). This establishes that

multicasts will be virtually synchronous in the sense of Section 2.

4.4.2 Initializing VT fields

Say that process pj is joining group ga. Then pj will need to obtain the current VT

values for other group members. Because pj participates in the flush protocol, this can

-be achieved by having each process include its VT value in the Rush message, pj will

initialize VTa[i] with the value it receives in the Rush message from pi; pj initializes

VTa[j] to O.

4.4.3 Failure atomicity

What about the casewhere some member ofg failsduring an execution? z_ewi+1(g)will

now reflectthe departureof some process.Assume thatprocesspj has receiveda message

m that was multicastby processp,. IfPi now fallsbeforecompleting itsmulticast,there

may be some thirdprocessp_ thathas not yetreceiveda copy ofm. To solvethisproblem,

pj must retaina copy of alldeliveredmessages,transmittinga copy ofmessages initiated

by pi to other members of tdew(g)ifpi fails.Processesidentifyand rejectduplicates.

Multicastingnow becomes the same two-phase protocolneeded to implement the conser-

vativerule.The terminate message indicateswhich messages may be discarded;itcan

be sent as a separatemessage or piggybacked on some othermulticast.

On receivingvie_#k(g)indicatingthatpi failed,pj runs thisprotocol:

i. Close the channel to Pl.

19

2. For any unterminated multicast m initiated by Pi, send a copy of m to all processes

in v/e_k(g) (duplicatesare discardedon reception).

3. Send a flush message to allprocessesin v/e_t(g).

. Simulate receiptof flush and ack messages from Pi as needed by the channel and

view flushprotocols,and treatany message being senttop_ as having been delivered

in the conservativeprotocol(Section4.3.1).

. After receivingflush

delayed pending on a

messages from allprocessesin v/ewk(g),discardany messages

message from p_.

6. pj ceasesto maintain VTg[i].

Step 2 ensures atomic.ivy and step 4 prevents deadlock in the VT, LT and the conservative

protocol. Step 5 relates to chains of messages ml-.'.*m2 where a copy of m2 has been

received but ml was lost in a failure; this can only happen if every process that received

ml has failed (otherwise a copy of ml would have been received prior to receipt of the

flush message). In such a situation, m2 will never have been deliverable and hence can

be discarded.

This touches on an important issue. Consider a chain of communication that arises

e_'_ervta/toa processgroup but dependent on a multicastwithin that group. Earlier,we

showed that causal deliveryisassured by the acycllcVT protocol,but thisassumed that

multicastswould not be lost.Instead,say that processesP1 and P2 belong to group gl and

that processP2 alsobelongs to g2. P_ multicastsml to gl;P2 receivesml and multicasts

m2 to g2- Now, ifp_ and F_ both fail,itmay be that ml islostbut that m2 isreceived

by the members of gl N g2 that are stilloperational.

Severalcasesnow arise,alltroubling.Consider a processq that receivesm_. Ifq receives

m2 prior to running the failureprotocol,it willdiscard it under step 5. If q receives

m2 afterrunning the failureprotocol,however, itwillhave discardedthe VT fieldcorre-

sponding to Fi. m2 willnot be delayed pending receiptof ml and hence willultimately

be delivered,violatingcausality.(q cannot discard m2 because itmay have been deliv-

ered elsewhere.)We thus see that both causalityand atomicitycould be violatedby an

unfortunate sequence of failurescoincidentwith a particularpattern of communication,

and that the system willbe unable to detectthat thishas occurred.

One way to avoid thisproblem isto requirethat processesalways use the conservative

ruleof Section 4.3.1,even ifthe communication structureisknown to be acyclic.In our

example, thiswould preventP2 from communicating ing2 untilm_ reacheditsdestinations.

Recallthat step4 ofthe protocolgiven above prevents the conservativerulefrom blocking

when failuresoccur.

An alternativeis to accept some risk and operate the system unsafely. For example,

a process might be permitted to initiatea multicast to group g only ifall of itsown

2O

multicasts to other groups have been delivered to at least one other destination process;

this yields a protocol tolerant of any single f_lure, s

Given a 1-resilient protocol, the sequence of events that could cause causal delivery to be

violated seems quite unlikely. A _-resilient protocol can be built by also delaying receivers;

for large k, this reverts to the conservative approach.

We believe that even for a 1-resilient protocol, the scenario in question (two failures that

occur in sequence simultaneously with a particular pattern of communication) is extremely

improbable. The odds of such a sequence occurring is probably outweighed by the risk of

a software bug or hardware problem that would cause causality to be violated for some

mundane reason, like corruption of a timestamp or data structure.

Our initial implementation of bypass CBCAST uses the conservative solution between all

groups; i.e. all groups are excluded. The VT protocol is used for communication within a

group. This version of Isis is thus immune to the causality and atomicity problems cited

above, but incurs a high overhead if processes multicast to a series of groups in quick

succession, which is not uncommon. Our plan is to modify the implementation to use

the more optimistic protocols in a 1-resilient manner, but to provide application designers

with a way to force the system into a completely safe mode of operation if desired. It

should be noted that limitations such as this are common in distributed systems; a review

of such problems is included in [BJ89]. We are not alone in advocating a "safe enough"

solution in order to increase performance.

4.4.4 Dynamic communication graphs

A minor problem arises in applications having the following special structure:

1. The combined VT-LT protocol is in use.

2. Processes may leave groups other than because of failures (in Isis, this is uncommon

but possible).

3. Such a process may later join other groups.

Earlier, it was suggested that a process might observe that the (single) group to which

it belongs is adjacent to just one other group, and conclude that it cannot be part of a

cycle. In this class of applications, this rule may fail.

To see this, suppose that a process p belongs to group gl, then leaves gl and joins g2. If

there was no period during which p belonged to both gl and 92, P would use the acyclic

VT protocol for all communication in both gl and g2. Yet, it is clear that p represents a

path by which messages sent in g2 could be causally dependent upon messages p received

6When using a transport facility that exploits physical multicast such a message will most often have
reached all of its destinations.

21

in gl, leading to a cyclic message chain that traverses gl and g2. This creates a race

cond/tion under which violations of the causal delivery ordering could result.

This problem can be overcome in the following manner. Associate with each group a

counter of the number of other groups to which it has ever been adjacent; this requires

only a trivial extension of the flush protocol. Moreover, say that even after a process p

leaves a _roup gl, it reports itself _ a oae-time member of gl. If p joins some group g2,_

the adjacency count for g2 will now reiiect its prior membership, and if a causal chain

could possibly arise, multicasts will be under the exclusion rule. Clearly, this solution

is conservativeand could be costly. Oa the other hand, say that it isknown that all

multicaststerm/hate within some time delay _. Then one could decrement the adjacency

counter fora group aftera delay of _ time units without risk.In Isls,a reasonable value

of _ would be on the order of 2-3 seconds.

We have developed more sophisticatedsolutionsto thisproblem, but omit these because

the issue only arises in a small class of applications, and the methods and their proofs are

complex.

4.4.$ R_cap of the extended protocol

In presentingour algorithm as a basic scheme to which a seriesof extensions and modi-

ficationswere made, we may have obscured the overallpicture.We conclude the section

with a briefsummary of the protocolas we intend to use itin Isls.

The protocolwe ultimatelyplan touse in Islsisthe acyclicVT solutioncombined with the

LT protocol.This protocolpiggybacks an LT timestamp and a list0fVT t_estamps on

each message, one VT vectorforeach group to which the senderof the message belongs.

In addition to the code for delaying messages upon reception,the protocol implements

the channel- and view-/lushand terminate algorithms.

Under most conditionsthe Islssystem willbe operated conservatively,excluding groups

adjacent to more than one neighboring group. As noted above, neighboring groups can

be counted by piggybacking information on the view-flush protocol. Looking to the

future,we expect to develop Islssubsystems that willhave speciala-p,/o_ knowledge

of the communication structure.These subsystems willmake use of an Isls system ,-,ll

pg_oxclude(gname, TRUE/FALSE) to indicatethe exclusionstatusofgroups. We curently

have no plans to develop sophisticatedcommunication topology algorithms forIsls.

The initialIslsimplementation consistsof the VT scheme and the conserv-_tiverule,

togetherwith the view-flushand terminateprotocols.We expect toadd the LT extension

shortly;the necessarycode issmall compared to what isalreadyrunning.

22

5 Other communication requirements

In this section we consider some minor extensions of the protocol for other common

communication requirements.

5.1 A Bypass ABCAST protocol

Readers may wonder if the bypass CBCAST protocol can be extended into a fast AB-

CAST mechanism. ABCAST is a totally ordered communication protocol: all destina-

tions receive an ABCAST message in a single, globally fixed order.

The answer to this question depends on the semantics one associates with ABCAST

addressing. One way to define ABCAST is to say that two ABCAST's to the same

logical address will be totally ordered, but to make no guarantees about ordering for

ABCAST messages sent to different addresses. A more powerful alternative is to say

that regardless of the destination processes, if two ABCAST's overlap at some set of

destinations, they are delivered in the same order. Although Isxs currently supports the

latter approach, it is far easier to implement a bypass ABCAST with the weaker delivery

semantics; the resulting protocol resembles the one in [CM84]. This is in contrast with

bypass CBCAST, which always achieves causal ordering.

Associated with each view mewi(g) of a process group g will be a token holder process,

token(g)Emewi(g). If the holder falls, the token is automatically reassigned to a live

group member using any Well-known, deterministic rule. Assume that each message m is

uniquely identified by uid(m).

To ABCAST m, a process holding the token uses CBCAST to transmit m. If the

sender is not holding the token, the ABCAST is done in stages:

. The sender CBCAST's a needs-order message containing m.

ing this message delay delivery of m.

r Processesreceiv-

, If a process holding the token receivesa needs-order message, it CBCAST's a

sets-order message givinga listof one or more messages, identifiedby uid,and

the order in which to deliverthem, which itmay chose arbitrarily.Ifdesired,a new

token holdermay alsobe specifiedin thismessage.

3. On receipt of a sets-order, a process notes the new token holder and delivers

delayed messages in the specified order.

4. On detection of the failure of the token holder, after completing the gush protocol,

all processes sort pending ABCAST's and deliver them in any consistent order.

rltmightappearcheaperto forwardsucha messasedirectlyto thetokenholder.However,fora
moderatelylarsemessagessucha solutionwilldoubletheIO doneby thetokenholder,creatingalikely
bottleneck,whilereducingtheIO loadon otherdestinationsonlytoa minordegree.

23

This protocol is essentially identical to the replicated data protocol proved correct in

[BJ89,Sch88]. Step 4 is correct because the flush ensures that any se_-order messages

will have been delivered atomically, hence all processes will have the same enqueued

messages which they deliver immediately before installing the new view.

The cost of doing a bypass ABCAST depends on the locations where multicasts originate

and frequency with which the token is moved. If multicasts tend to originate at the same

process repeatedly, then once the token is moved to that site, the cost is one CBCAST

per ABCAST. If they originate randomly and the token is not moved, the cost is 1 + 1/k

CBCAST's per ABCAST, where we assume that one se_-order message is sent for

ordering purposes once for every k ABCAST's. This represents a major improvement

over the existing Isls ABCAST protocol However, because bypass ABCAST achieves

a weaker form of ordering, it might require changes to existing Isis applications. We have

not yet decided whether to make it the default.

4,

5.2 Point-to-point messages

Early in the the paper, we asserted that asynchronous CBCAST is the dominant protocol

used in Isls. Point-to-point messages, arising from replies to multicast requests and and

RPC interactions, are also common. In both cases, causal delivery is desired. Here, we

consider the case of point-to-point messages sent by a process p within a group G to which

p belongs.

A straightforward way to incorporate point-to-point messages into our I/Y protocol is to

require that they be acknowledged and to inhibit the sending of new multicasts during

the perlod between when such a message is transmitted and when the acknowledgement is

received (in the case of an RPC, the reply is the acknowledgement). The recipient is not

inhibited, and need not keep a copy of the message. A point-to-point message is times-

tamped using the sender's logical and vector times, and delivered using the corresponding

delivery algorithms, but neither timestamp is incremented prior to transmission. In effect,

point-to-point lhessages are treated as events internal to the processes involved.

The argument in favor of this method is that a sin_e point-to-point RPC is fast and

the cost is unaffected by the size of the system. Although one can devise more complex

methods that eliminate the period of inhibited multicasting, problems of fault-tolerance
render them less desirable.

5.3 Subset multicasts

Some Islsapplicationsform largeprocess groups but requirethe abilityto multicastto

subsets of the totalmembership. Our protocol is easilyextended into one supporting

subset multicast,and our initialIslsimplementation supports thisas an option. When

enabled, a P'T vectortimestamp of length s, isneeded fora group with s senders and n

members.

24

For example, a stock brokerage might support a quote dissemination service with two or

three transmitters and hundreds of potential recipients. Rather than form a subgroup

for each stock (costly approach if there are many stocks), each multicast could be sent

to exactly those group members interested in a given quote. We omit the details of the
subset multicast extension.

6 Performance and transport protocol selection

In this section, we discuss the performance of our protocol. We show that the performance

of the bypass protocol will be largely dominated by the performance of the underlying

layer that is simply concerned with moving data from one site to others. We discuss the

design of some alternatives for this layer, which we are currently implementing.

6.1 Complexity and overhead of the protocol

Implementation of the bypass protocol was straightforward in Isis, requiring less than 1300

lines of code out of the total of 52,000 in the protocol layer of the system. Extensions

to support the LT protocol will add little additional code. Initial measurements of

performance demonstrate a five to tenfold speedup over the prior Isxs protocols.

Our protocol has an overhead of both space and messages transmitted. The size of a

message win be increased by the vector time fields it carries; as noted above, the number

of such vectors is determined by the total cardinality of the groups to which the sender

belongs directly, and hence will be small. The number of overhead messages sent will

depend on the number of non-piggybacked 1;erminal;e messages sent by the conservative

protocol and, when implemented, the frequency of LT pinging. In Isis, LT pinging is

expected to be rare and terminate messages are always piggybacked on a subsequent

CBCAST unless communication in a group qulesces. (As noted before, LT overhead can

be bounded using a periodic protocol, if necessary).

We believe that latency, especially when the sender of a multicast must delay before

continuing computation, is the most critical and yet unappreciated form of overhead.

Delays of this form are extremely noticable. In many systems, there is only one active

computation at a given instant in time, ora single computation that holds a lock or other

critical resource. Delaying the sender of a multicast may thus have the effect of shutting

down the the entire system. In contrast, the delay between when a message is sent and

when it reaches a remote destination is less relevant to performance. The sender may

be delayed in two ways: if the transmission protocol itself is computationally costly, or

if a self-addressed multicast cannot be delivered promptly because it is unsafe to do so.

Defined in this sense, our method imposes latency on the sender of a multicast only in the

conservative protocol, and only when a process switches from multicasting in one group

to another, or needs to communicate in one group after receiving in another. Otherwise,

the protocol is totally asynchronous. Latency on the transport side is less critical. The

25

dominant source of transportlatency is LT ping_.ng,and we plan to quantify thiseffect

by instrumenting Islsand using simulations.

8.2 Implementation

An interestingfeatureof the bypass fa_Uty isthatitassumes very littleabout communi-

cationbetween processes,and communicates inan extremely regalarmanner. Specifically,

the protocol we ended with sends or multicastsonly within groups to which a sending

process belongs, and requiresonly that inter-processcommunication be sequenced and

Iossless.The idea of providingan interfaceby which the bypass multicastprotocolscould

run over a lower-layerprotocolprovided by the applicationappealed to us,and as part of

the ISxsimplementation of bypass CBCAST and ABCAST, we included an interface

permitting thistype of extension.We callthislower layerthe rn_t_coattransportprotocol.

A multicasttransport protocol simply deliversmessages reliably,in FIFO order, to the

groups or proces_ _dressed. _ i=_- == __ __ _=_--=__:i_ i:_ _ :

When no specialhardware formulticastingisavailable,the basicISlsmulticasttransport

protocol isbased on UDP (unreliabledatagrams). When multicastinghardware isavail-

able,Islscan switch to an experimentalmulticasttransportprotocolthat takesadvantage

of such hardware. The remainder of thissectiondetailsthe design,performance and over-

head of these multicast transportprotocols(in time, size,and messages exchanged per

multicast).

6.3 Overhead imposed by the basic VT Protocol

T_s Section breaks do_-_e: COsts we see _ terms Of_ous Components of the Overhead

(createa lightweight task,do the I/O, selectsystem c_,=createthe packets,reconstruct

them on reception).Fi_.re 4 breaks down the basic CPU costsof sending and receiving

messages in our implementation. These j_j_resare preliminaryami tonibe rev_e_. These

figuresare for the combined protocol,but they do not reflectkigher leveldelays that

might be imposed by infrequenteventssuch as LT pinging or the view flush.Our figures

were derivedon a pairof SUN 3/60'sdoing continuous nullRPC's from one to the other.

The R.PC request was sent in a CBCAST; the resultreturned in a CBCAST reply

packet. A new lightweighttask was created at the receiverto fieldeach R.PC request.

An Islsmessage isfairlycomplex and allowsscatter/gatherand arbritraxyuser-defined

and system-checked types. Since no attempt has been made to optimize_messa_e data

structuresfor the simp_ c_ of:anullRPC, thisacCounts for a a largepart of the time

spent in the messs_ing/t_Sk I_y_ of the syst_. 'i:_ _...... _ _i : _ : =_ _

The main conclusionfrom thesemeasurements isthatthe CBCAST algorithmswe derive

in thispaper axe quite inexpensive.Most of the t_e that a message spends in transitis

spent in the lower layersof the system. Clearly,the cost of UNIX messaging is beyond

our control,but a great dealcan be said about multicasttransport.

26

Bypass Cbcast

Transport/

Tasks

System Calls

Wire [

Sender

0.2ms

0.9ms

1.7ms

Receiver

t 0.3ms

1.4ms

1.Oms

Total Time: 5.5ms

Isis

UNIX

Figure 4: Basic protocol overhead

6.4 Multicast transport protocol selection

The basic Islsmulticasttransportprotocolis designed around a point-to-pointmodel.

Each processin a group maintainsa two-way reliabledata stream with each other process

in the group. Whenever possible,acknowledgement informationispiggybacked on other

packets,such as repliesto an RPC or multicast.These streams are maintained indepen-

dently of each other;for brevity,we omit discussionof such detailsas flow controland

failuredetection.This scheme has severaladvantages;itisrelativelyeasy to understand,

as itisbased on a well-known communication model. Sinceitisbuilton top ofunreliable

datagrams, itcan be easilyimplemented on any network thatprovidesthisservice.Ithas,

however, severaldisadvantages- in particular,itdoes not scalewell.The processingand

network transmissioncostsofcommunicating with a group riselinearlywith the number

of processors in-the group.-l.n addition, as the number of processes in a group increases, a

process sending to the group may experience congestion at the network interface as many

acknoWleclgemen-tor reply packets arrive more or less simultaneously from the other other

processes in the group.

We have therefore investigated the design of other multicast transport protocols. An ideal

multicast transport protocol would have the following features:

• It would be independent of network topology, but able to take advantage of features

of particular networks - e.g. a broadcast subnet.

• The cost of sending a message would be independent of the number of recipients of

27

that message.

• Itwould work efficientlyfor both small and largemessages.

• It would have low overhead,latency and high throughput.

It is also important to note that frequentlya multicastmay give riseto many replies

directed to the originM sender. We callsuch an occurrence a convergecast..This can

lead to congestion at the originalmulticastsender,with many of the repliesbeing lost.

To avokr this,a multicast transport protocol should have some sort of mechanism for

co-ordinatingand reliablydeliveringmulticastreplies.Similarconsiderationsmay apply

to acknowledgements; however acknowledgements need not be as timely as replies- the

multicasttransportprotocolhas more freedom to delay them.

Generally speaking,a reliablemulticasttransportmechanism willbe used in two distinct

modes. In the first,stream mode, one processwillmulticasta largeamount of data to the

group beforeanother processwishesto reply.Multicastingiscontinuous.This usage could

arisein,for example, a trading system, where the transportmechanism is being used to

disseminatequotes to tradingstations.Another example isa replicated_e system where

a clientworkstationiswritinga fileto.agroup offileservers.In _ mode, many processes

multic_t replicatedrpc'sto the group, where each rpc containsrelativelylittledata, and

ismuch more likelyto actuallyrequirea reply.Multicastsare not continuous,but bursty.

This could arisein maint_g and querying a distributeddatabase or maint_g the

state of a distributedgame. Note that the applicationusing the multicast transport

protocol can provide hints as to which mode itt_ itisoperating in. Interm_ate

modes of usage can of course _; we do not_t them to be c0_pn.

Reliablemulticast tr_port _protocolsmay be divided into two classes;those based on

positiveacknowledgements, and those based on negative_cknowiedgements. Many pre-

vious proposals for reliablemulticast transport protocolshave been based on negative

acknowledgements, including [KTHB89,AHL89,CM84]. (Some of these protocols,in ad-

ditionto_roviding reliabletransport,alsoprovide transportorderingproperties.)This is

because the designersof these protocolsbelieved that a positiveacknowledgement from

each receivingsitewould be expensive. We do not believethat thisisso.

Ifa processgroup islargelycommunicating in rpcmode, replymessages willbe converging

at the sender in any case. These replymessages can carry positiveacknowledgements. In

addition,ifthere are many of these reply messages, they should be scheduled by some

mechanlsm to avoid congestion and message lossat the multicastsender. On the other

hand, ifa group islargelycommunicating in streammode, the issueof_iowcontrolbecomes

very important. The sender can'tsend data fasterthan the slowestprocessin the group

can receiveit;in order to avoid packet loss,there willbe _ow controlpackets coming

back to the sender from each other processin the group. Again, these packets may carry

positiveacknowledgments, and again,they must be scheduledin order to avoid congestion

problems. The protocolhas more flexibilityin schedulingthese packetsthan in scheduling

replypackets,sincethey do not containdata thatneeds to be deliveredto the higherlevel.

28

There are several possible mechanisms for scheduling packets that are converging on the

same destination. One scheme is for the original sender to schedule the packets; it will

decide how many concurrent acknowledgments or replies it (and the network) can handle.

It then schedules each group of acknowledgements. This scheme involves some extra work

by the sender; it has the advantage that the sender can control the rate at which the

packets come back depending on whether or not his client is waiting for replies.

Other methods involve the receivers co-operating to ensure that they don't send too many

packets to the sender at once. One such method basically in_blves passing one or several

tokens around the group, with the holder of a token having the right to send reply or

acknowledgement packets to the original sender. If the replies or acknowledgements are

small, they can be put on the token itself, which is returned to the sender when it is full.

The main problem with this scheme is that the acknowledgement or reply may take a long

time to return to the original sender of a message. This can be overcome by using large

window sizes, or by using a large enough number of tokens. Another problem is that the

overhead of receiving a message is higher, because an acknowledgement token must be
received and transmitted also. This can be overcome by having one token acknowledge

several messages, and by piggybacking the acknowledgement token wherever possible. A

third problem is that the loss of one acknowledgement packet may cause a message to be

retransmitted to multiple destinations. We believe that the _xtra overhead is acceptable,

since packet loss should be rare.

Another receiver-scheduled method for handling acknowledgements or replies is simply

to have each acknowledgement be returned at some random time by the recipients. This

scheme has been extensively analyzed by [Dan89]; the main problem is that in order to

avoid congestion at the original sender, the interval from which the random delays must be

picked is very long. It is also of course possible to combine several of the above schemes;

for example, acknowledgements could be sender-scheduled in small groups; individual

acknowledgements within each group could be further randomly delayed.

We are implementing multicast transport protocols with several of the convergecast-

avoidance scheduling strategies described above, and will experiment with them as al-

ternatives to the basic ISIS multicast transport protocol. Our implementations are based

on the multicast UDP software of [Dee88], which provides a logical unreliable multicast

across interaets independently of whether the underlying networks support physical mul-

ticast. Full details of the design and implementation of these protocols will be found

in [Steg0]. We will include performance measurements fo_: the bypass CBCAST and

ABCAST protocols running over these transport protocols in the final version of the

paper.

29

7 Related Work

There has been a great deal of work on multicast primitives. CBCAST-like primitives

are described in [BJ87,PBS89,VRB89,SES89,LL86] As noted earlier, our work is most

closely related to that of La_lkin and Peterson. Both of these efforts stopped at essentially

the point we reached in Section 3 arriving a protocols that would perform well within a

single sm_ group, but subject to severe drawbacks in systems with large numbers of pro-

cesses and of overlapping, dyn_caUy changing process groups. Pragmatic COnsiderations

stemming from our desire to use the protocol in ISIS moti_ted us to take our protocol

considerably further. We believe the resulting work to be Interesting from a theoretical

persp_tive. Viewed from a practicalperspective,a causM multicastprotocoithatscales

well and imposes littleoverhead under typicalconditionscertainlyrepresentsa valuable
advance.

ABCAST-Iike primitivesare reported in [CM84'BJ871GMS89,PGM85]. Our ABCAST

protocol is motivat_ by the Chang-Maxemchuck solution [CM84], but is simpler and

faster because it can be expressed in terms of a virtually synchronous bypass C]3CAST.

In particular, our protocol avoids the potentially lengthy delays required by the Chang-

Maxemchuck approach prior to committing a message delivery ordering. We believe this

argues strongly for a separation of concerns in particular, a decoupling process grbUp

management from the communication p_tive itself.-_i__°...._ _._

We note th_at-0fthe many protocolsdescribedin the literature_ve_e_ewhave_ _ple'

mented, and many have potentiallyunbounded overhead or postulate knowledge about

the system communication structurethat might be complex to deduce. This makes direct

performance comparisons difficult,sincemany published protocolsgiveperformance esti-

mates based on simulationsor measure dedicatedimplementations on bare hardware. We

are confidentthat the Islsbypass communicatlon suitegivesperformance fullycompeti-

tivewith any alternative.The abilityto extend the transportlayerwillenable the system

to remain competitiveeven in settingswith novel architecturesor specialcommunication

hardware.

The abilityto run the bypass protocolsover new transportprotocolsraisesquestionsfor

future investigation.For example, one might run bypass CBCAST over a transport

layerwith known realtime properties.Depending on the nature of these properties,such

a composed protocol could satisfyboth setsof propertiessimultaneously,or could favor

one over the other. For example, the delay of flushingchannels suggests that realtime

and virtualsynchrony propertiesare fundamentally incompatible, but this stillleaves

open the possibilityof supporting a choice between weakening the realtime guarantees

to ensure that the system willbe virtuallysynchronous and weakening virtualsynchrony

to ensure that realtime deadlinesare always respected. For many applications,such a

choice could lead to an extremely effective,tuned solution.Pursuing thisidea,we see

the IslSsystem graduallyevolvingInto a more modular structurecomposed of separable

facilitiesforgroup view management, enforcingcausality,transportingdata,and so forth.

3O

For a particularsetting,one would selectjust those facilitiesactuallyneeded. Such a

compositionalprogramming stylehas been advocated by others,notably Larry Peterson

in his researchon the Psync system.

8 Conclusions

We have presented a new scheme, the bypass protocol, for efficiently implementing a re-

liable, causally ordered multicast primitive. Intended for use in the Isis toolkit, it offers

a way to bypass the most costly aspects of Isis wkile benefiting from virtual synchrony.

The bypass protocol is inexpensive, yields high performance, and scales well. Measured

speedups of more than an order of magnitude were obtained when the protocol was im-

plemented within Isls. Our conclusion is that systems such as Isis can achieve perfor-

mance competitive with the best existing multicast facilities - a finding contradicting the

widespread concern that fault-tolerance may be unacceptably costly.

Acknowledgements

The authors are grateful to Keith Marzullo, who suggested we search for the necessary
and sufficient conditions of Section 4.2, and made many other useful comments. Tushar

Chandra found several bugs in our proofs. Mark Wood, Robert Cooper and Shivakant

Misra made extensive suggestions concerning the protocols and presentation, which we

greatly appreciate.

References

[AHL89]

[BJST]

[BJ89]

[BJKS88]

M.Stella Atkins, Garnik Haftevani,and Wo Shun Luk. An efficientkernel-

leveldependable multicastprotocolfor distributedsystems. In Proceedingsof

the Eighth Symposium on Reliable Distributed Systems, pages 94-101. IEEE,
1989.

Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the

presence of failures. ACM Transaction,s on Computer Systems, 5(1):47-76,

February 1987.

Ken Birman and Tommy Joseph. Exploiting replication in distributed sys-

tems. In Sape MttUender, editor, Distributed Systems, pages 319-368, New

York, 1989. ACM Press, Addison-Wesley.

Kenneth A. Birman, Thomas A. Joseph, Kenneth Kane, and Frank Schmuck.

ISIS -- A Distributed Programming Environment User's Guide and Reference

Manual. Department of Computer Science, Cornell University, first edition,
March 1988.

31

[CASD86]

[cM84]

[Dan89]

[DeeS8]

[FidS8]

[GMS89]

[KTHB89]

[LL86]

[Mars4]

[MatS9]

[PBS89]

Flaviu Cristian, Houtan AghiU, H. Ray Strong, and Danny Dolev. Atomic

broadcast: From simple message diffusion to Byzantine agreement. Technical

Report 1135244, IBM Research Laboratory, San Jose, California, July 1986.

An earlier version appeared in the I985 Proceedings of the International Sym-

posium on Fanlt-Tolerant Computing.

J. Chang and N. Maxemchuk. Reliablebroadcast protocols.ACM Trarusac.

t_ntson Computer Systerru_,2(3):251-273,August 1984.

Peter Danzig. Finitebuffersand fastmulticast.In Proceedingsof the ACM

Conference on Measurement and Modelling of Computer Systenus,Berkeley,

California,1989. ACM SIGMETRICS.

S. Deering. Multicastroutinein internetworksand extended fans.In Proceed.

ings of theS_mposium on Communications Architectures gd Protocols, pages

55-64, Stanford,California,August 1988.ACM SIGCOMM.

C. Fidge. Timestamps in message-passing systems that preserve the partial

ordering. In Proceedings of the llth Australian Computer Science Conference,
1988.

Hector Garcia-Molina and Annemarie Spanster. Message ordering in a multi-

cast environment. In Proceedings 9th International Con/erence on Distributed

ComFuting Syterna, pages 354-361. IEEE, June 1989.

M. Frsns Kaa.shoek, Andrew S. Tanenbaum, Susan Flynn Hummel, and

Henri E. Bal. An efficientreliablebroadcast protocol. Operating Systenus

P,_rv/ew,23(4):5-19,October 1989.

LeslieLamnport. Time, clocks,and the ordering of events in a distributed

system. Communicat_ of_ ACM, 21(7):558-565, July 1978.

Barbara Liskov and Rivk_ Lad]dn. Kigldy-ava_able distributed services and

fault-tolerant distributed garbage collection. In Proceedings of the Fifth A CM

Symposium or= Principles of Distributed Computing, pages 29-39, Calgary,
Alberta, August 1986. ACM SIGOPS-SIGACT.

Kelth Marzullo. Maintaining the Time in a D_strib_tedSystem. PhD thesis,

Stanford University,Department of ElectricalEngineering,June 1984.

F. Matte.re. Time and global statesin distributedsystems. In Proceedings

of the InternationalWorkshop on Parallel and Distributed Algorithms. North-

Holland, 1989.

Larry L. Peterson,Nick C. Bucholz, and Richard Schlichting.Preserving and

using contextinformation in interprocesscommunication. A CM _rurusactiorus

on Computer S_/stern_,7(3):217-246,August 1989.

32

[PGM85]

[Sch88]

[SES89]

[ST87]

[Steg0]

[VRB89]

F. Pitelli and Hector Garcia-Molina. Data processing with triple modular

redundancy. Technical Report TR-002-85, Princeton University, June 1985.

Frank Schmuck. The use of E_zcient Broadcast Primitives in Asynchronous

Distributed Systems. PhD thesis, Cornell University, 1988.

A. Schiper, J. Eggli, and A Sandoz. A new algorithm to implement causal

ordering. In Proceedings of the Srd International Workshop on Distributed

Algorithms, Lecture Notes on Computer Science 395, pages 219-232. Springer-

Verlag, 1989.

T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of

the ACM, 34(3):626-645, July 1987.

Pat Stephenson. Ordered Broadcast in Internets. PhD thesis, CorneU Univer-

sity, August 1990. To appear.

Paulo Ver_ssimo, Lugs Rodrigues, and M£rio Baptista. Amp: A highly parallel

atomic multicast protocol. In Proceedings of theSymposiurn on Communica-

tions Architectures _ Protocols, pages 83-93, Austin, Texas, September 1989.

ACM SIGCOMM.

33

